send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
Type your modal answer and submitt for approval
A train of length 400 m takes 15 seconds to cross a train of length 300 m travelling at 60 km per hour from the opposite direction along a parallel track. What is the speed of the longer train, in km per hour ?
108
102
98
96
- Two trains are moving towards each other on parallel tracks.
- One train is 400 m long (longer train) and another is 300 m long (shorter train).
- The relative length for crossing: 400 m + 300 m = 700 m.
- Time taken to cross: 15 seconds.
- Speed of the shorter train: 60 km/h = (60 * 1000) / 3600 = 16.67 m/s.
- Let the speed of the longer train be `v` m/s.
- Relative speed for crossing: v + 16.67 m/s.
- Formula: Distance = Speed * Time, i.e., 700 = (v + 16.67) * 15.
- Solving the equation: v + 16.67 = 700/15 = 46.67.
- Thus, v = 46.67 - 16.67 = 30 m/s.
- Converting the speed of the longer train: 30 m/s * (3600/1000) = 108 km/h.
The correct speed of the longer train is 108 km/h. .
Report error
Access to prime resources