send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
Dear Readers, here we are posting some useful notes and concepts for the topic "HCF & LCM" which we hope will be helpful in the Quant section of the exams. The post consists of various important concepts covered under the topic "HCF & LCM".
HCF & LCM are acronym for words, Highest common factor and Lowest common multiple respectively.
While we all know what a multiplication is like 2 * 3 = 6. HCF is just the reverse of multiplication which is known as Factorization. Now factorization is breaking a composite number into its prime factors. Like 6 = 2 * 3, where 6 is a composite number and 2 & 3 are prime number.
“In mathematics, the Highest Common Factor (HCF) of two or more integers is the largest positive integer that divides the numbers without a remainder. For example, the HCF of 8 and 12 is 4.”
Calculation
Highest Common Factor can be calculated by first determining the prime factors of the two numbers and then comparing those factors, to take out the common factors.
As in the following example: HCF (18, 42), we find the prime factors of 18 = 2 * 3 * 3 and 42 = 7 * 2 * 3 and notice the "common" of the two expressions is 2 * 3; So HCF (18, 42) = 6.
In this method first divide a higher number by smaller number.
First, find H.C.F. of 72 and 126
72|126|1 72 54| 72|1 54 18| 54| 3 54 0
H.C.F. of 72 and 126 = 18
The Least Common Multiple of two or more integers is always divisible by all the integers it is derived from. For example, 20 is a multiple of 5 because 5 × 4 = 20, so 20 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 4.
LCM cam also be understand by this example:
Multiples of 5 are:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 ...
And the multiples of 6 are:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ...
Common multiples of 5 and 6 are:
30, 60, 90, 120, ....
Hence, the lowest common multiple is simply the first number in the common multiple list i.e 30.
The prime factorization theorem says that every positive integer greater than 1 can be written in only one way as a product of prime numbers.
Example: To find the value of LCM (9, 48, and 21).
First, find the factor of each number and express it as a product of prime number powers.
Like 9 = 32,
48 = 24 * 3
21 = 3 * 7
Then, write all the factors with their highest power like 32, 24, and 7. And multiply them to get their LCM.
Hence, LCM (9, 21, and 48) is 32 * 24 * 7 = 1008.
Here, divide all the integers by a common number until no two numbers are further divisible. Then multiply the common divisor and the remaining number to get the LCM.
2 | 72, 240, 196 2 | 36, 120, 98 2 | 18, 60, 49 3 | 9, 30, 49 | 3, 10, 49
L.C.M. of the given numbers = product of divisors and the remaining numbers = 2×2×2×3×3×10×49 = 72×10×49 = 35280.
The product of L.C.M. and H.C.F. of two natural numbers = the product of the numbers.
For Example:
LCM (8, 28) = 56 & HCF (8, 28) = 4
Now, 8 * 28 = 224 and also, 56 * 4 = 224
Formulae for finding the HCF & LCM of a fractional number.
HCF of fraction = HCF of numerator / LCM of denominator
LCM of Fraction = LCM of Numerator / HCF of Denominator
By: Sandeep Dubey ProfileResourcesReport error
Access to prime resources
New Courses