send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
A word which can also be used in the place of ‘Probability’ is ‘Chance’. We all are well aware of the word ‘chance’. We use it in our daily life. Whatever we do, whatever we observe, there is always a chance that this is going to happen or not. When we want to find out the value of this chance in a quantitative form, at that point of time we use ‘Probability’ at the place of ‘Chance’.
Experiment: Whatever we do, is called experiment.
Outcome: Whatever is the result of the experiment is known as the outcome.
Favourable Outcome: The outcome in which we are interested is known as favorable outcome.
Total possible outcomes: All possibilities related to the result of experiment.
If one is aware with all the basic terms of probability, then the probability of any event / experiment can be found out by dividing the favourable outcome by total possible outcomes.
For example: Suppose we have a pack of cards and we want to pick a king of red then there will be less chance that we will pick out the same one. But let us find this quantitatively.
In this example: Experiment – Picking out one card from a pack of 52 cards.
Favourable outcome – Card picked out is red king (King of Heart or Diamond) (Only 2)
Total possible outcomes – Card picked out is any one of the total 52 cards.
Probability = (Favourable outcome / Total possible outcomes)
Combination is also known as collection. Whenever we deal with probability questions, we use only Combination concept of ‘Permutation and Combination’. The reason is that in probability, we only have to collect or pick the things. We don’t arrange them after picking out. So once a student knows the basics of Combination can deal with probability questions in easy way.
The formula used for combination is nCr
nCr = n! / [r! x (n-r)!]
nCr = [n x (n-1) x (n-2) x…...x(n-r+1) x (n-r) X…....x 1] / [1x 2 x 3….. x r] x [(n-r) x……..3 x 2 x 1]
nCr = [n x (n-1) x (n-2) x (n-3)….. x (n-r+1)] / [1x 2 x 3….. x r]
For example: 12C2 = 12!/ [2! X (12-2)!] = 12!/ (2! X 10!) = [12 x 11] / [1 x 2] = 66
5C2 = [5 x 4] / [1 x 2] = 10
nCr = nC(n-r)
For example: 5C3 = [5 x 4 x 3] / [1 x 2 x 3] = [5 x 4]/[1 x 2] = 5C2 = 10
10C7 = 10C3 = [10 x 9 x 8]/[1 x 2 x 3] = 120
Let us see how we can solve the probability questions, by taking the example of previous years questions asked in exams.
Two people A and B go for an interview, the probability of A clearing the interview is 1/2 and probability of B clearing the interview is 1/4.
Q-1) What is the probability that both A and B will clear the interview?
Solution: We will multiply the probability of happening of both the events.
(1/2) x (1/4) = 1/8
Q-2) What is the probability that either one of them will clear the interview?
Solution: We will add the probability of happening of both the events.
(1/2) + (1/4) = 3/4
Q-3) What is the probability that only A will clear the interview?
Solution: We will multiply the probability of happening of event A and non-happening of event B.
(1/2) x [1-(1/4)] = (1/2) x (3/4) = 3/8
Note: Probability of non-happening of an event is always found out by subtracting probability of happening of that event from 1. The reason is that an event may or may not take place. So probability of happening of the event and non-happening of the event always add up to 1.
Probability of non-happening of an event = 1 – (Happening of an event)
Q-4) What is the probability that only B will clear the interview?
Solution: We will multiply the probability of non-happening of event A and happening of event B.
[1-(1/2)] x (1/4) = (1/2) X (1/4) = 1/8
A bag contains 6 red shirts, 6 green shirts and 8 blue shirts.
Q-5) Two shirts are drawn randomly. What is the probability that both are green?
Solution: Favourable outcome – 2 Green shirts (out of 6)
Total possible outcomes – 2 shirts (out of 20)
Probability = 6C2/20C2 = [(6x5) / (1x2)]/ [(20x19)/(1X2)] = (6x5)/(20x19) = 3/38
Q-6) Three shirts are drawn randomly. What is the probability that two are blue and one is red ?
Solution: Favourable outcome – 2 blue (out of total 8) and 1 red shirt (out of total 6)
Total possible outcomes – 3 (out of 20)
Probability = (8C2 x 6C1)/ 20C3 = (28x6)/1140 = 14 / 95
Because we have ‘AND’ in favourable outcome, so we used multiplication.
Q-7) Two shirts are drawn randomly. What is the probability that both are either red or blue?
Solution: Favourable outcome – 2 red (out of total 6) or 2 blue (out of total 8)
Total possible outcomes – 2 (out of 20)
Probability = (6C2+8C2)/ 20C2 = (15+28)/190 = 43/190
Because we have ‘OR’ in favourable outcome, so we used addition.
Q-8) Out of 5 girls and 3 boys, 4 children are to be randomly selected for a quiz contest. What is the probability that all the selected children are girls?
Solution: Favourable outcome – 4 (out of 5)
Total possible outcomes – 4 (out of 8)
Probability = 5C4/8C4 = 5C1/8C4 = 5/70 = 1/14
Q-9) A die is thrown twice. What is the probability of getting a sum 7 from both the throws?
Solution: Favourable outcome – 6 [(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)]
Total possible outcomes – 6x6 = 36
Probability = 6/36 = 1/6
Q-10) A die is thrown thrice. What is the probability of getting a sum 5?
Solution: Favourable outcomes – 6[(1,1,3),(1,3,1),(3,1,1),(1,2,2),(2,1,2),(2,2,1)]
Total possible outcomes – 6x6x6 = 216
Probability = 6/216 = 1/36
By: Manpreet kaur ProfileResourcesReport error
Access to prime resources
New Courses