send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
Introduction
Agriculture is a key activity of human being since it provides basic needs such as food, clothing and shelter. It has been demonstrated that every 1% increase in agricultural yield translates into a 0.6–1.2% decrease in the numbers of absolute poor households in the world . Meanwhile, population growth was predicted to be 9.7 billion by 2050 and this will require an increase of about 70% in food production to meet the demand. Rainfed agriculture is projected to produce one-third or more of the food increase in global food output for the coming decades. Unfortunately, agricultural productivity depends on increasingly extreme weather phenomena. Thus, water availability, air pollution, and temperature have a large impact in agriculture.
Several factors pose significant risk to farms leading to yield reduction when they are not correctly monitored and well managed. These factors can be grouped into three categories which are technological, biological and environmental. The pressure to increase crop production in many countries, has resulted in the expansion of land area dedicated to agriculture and the intensification of cropland management through practices such as irrigation, use of large quantities of inputs like inorganic fertilizers and synthetic chemicals for pest and weed control. These practices have resulted in degradation of soil properties and water quality, acceleration of soil erosion, contamination of groundwater and decline of food quality. This has prompted sustainable intensification initiatives to increase yields on existing farmland while decreasing the environmental impact of agriculture.
Organic crop production is one of the alternative agricultural practices promoted for the reduction of environmental pollution. As a result, several countries have introduced organic farming practices to replace chemical-dependent ones. To conserve and regenerate soil properties, the maintenance of soil organic matter (SOM) has received considerable attention. Although SOM is considered key to soil health, its relationship with yield is contested because of local-scale differences in soils, climate, and farming systems. The relationship between these factors should be quantified and proper soil management strategies set up to ensure sustainable crop production.
The impact of climate change in our agricultural systems is undoubtable. For example, drought followed by intense rain can increase the flooding potential, thereby creating conditions that favor fungal infestations of leaves, roots, and tuber crops. In addition, the reduction of bees’ density due to global climate change has led to the local extinction of several plant species. The production of enough food to match population growth while preserving the environment is a key challenge, especially in the face of climate change. This chapter will review factors affecting yields of crops and provide some strategies to overcome yield loss while preserving the environment.
Environmental factors affecting crop yields
The environmental factors affecting crop yields can be classified into abiotic and biotic constraints. Actually, these factors are more intensified with global warming which leads to climate change. Abiotic stresses adversely affect growth, productivity and trigger a series of morphological, physiological, biochemical and molecular changes in plants. The abiotic constraints include soil properties (soil components, pH, physicochemical and biological properties), and climatic stresses (drought, cold, flood, heat stress, etc.). On the other hand, biotic factors include beneficial organisms (pollinators, decomposers and natural enemies), pests (arthropods, pathogens, weeds, vertebrate pests) and anthropogenic evolution.
Abiotic constraints
Variations in annual rainfall, average temperature, the global increase of atmospheric CO2, and fluctuations in sea levels are some of the major manifestations of climate change, which negatively impact crop yields. Temperature and rainfall changes are expected to significantly have a negative impact on a wide range of agricultural activities for the next few decades. With the changing of climate, agriculture faces increasing problems with extreme weather events leading to considerable yield losses of crops. Most often, crop plants are sensitive to stresses since they were mostly selected for high yield, and not for stress tolerance. Climate change is the result of global warming. It has devastating effects on plant growth and crop yield which can affect directly, indirectly, and socio-economically reduce crop yields by up to 70%. Weather variations present positive and negative effects in the environment with a very high expression of negative effects.
The regression analysis model between historical climatic data and yield data for food crops over the last 30 years in Nepal showed an increase in temperature of approximately 0.02–0.07°C per year in different seasons and a mixed trend in precipitation. Additionally, no significant impact of climate variables on yields of all crops was observed and the regression analysis revealed negative relationships between maize yield and summer precipitation, between wheat yield and winter minimum temperature, and finally positive relationship was observed between millet yield and summer maximum temperature.
Drought refers to a situation in which the amount of available water through rainfall and/or irrigation is insufficient to meet the evapotranspiration needs of the crop. Climate change is driven by changes in water availability (volumes and seasonal distribution), and in water demand for agriculture and other competing sectors. The impending climate change adversities are known to alter the abiotic stresses like variable temperature regimes and their associated impacts on water availability leading to drought, increased diseases and pest’s incidence and extreme weather events at local to regional scale. Moisture or drought stress accounts for about 30–70% loss of productivity of field crops during crop growth period. Drought stress can induce abscisic acid (ABA) accumulation in guard cells to trigger stomatal closure. Drought also results in abnormal metabolism that may reduce plant growth, and/or cause the death of entire plant. Drought has different effects at different stages of plant growth with the most sensitive growth stage being flowering period.
Heat stress is the rise in temperature beyond a threshold level for a period sufficient to cause permanent damage to plant growth and development. The Intergovernmental Panel on Climate Change (IPCC) projected rise of the temperature by 3–4° by 2050. High temperature regimes due to climate change affect the percentage of seed germination, photosynthetic efficiency, crop phenology, reproductive biology, flowering times, pollen viability and pollinator populations. Under heat stress at reproductive growth stage, the increase of temperature prevents the swelling of pollen grains, which results in poor release of pollen from the anther at dehiscence. Heat stress is deleterious to plant developmental stages, including generation and function of reproductive organs. Furthermore, variable temperature regimes may result in unpredictable disease epidemics across geographic regions in the world. Heat stress contributed about 40% to overall yield loss of wheat, 1.0–1.7% yield loss per day in maize for every raise in temperature above 30°C.
Cold or chilling stress experiences by plants from 0 to 15°C, leads to major crop losses. Various types of crops in tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit different symptoms such as poor germination, stunted seedlings, chlorosis, or growth retardation, reduced leaf expansion and wilting and necrosis. In general, plants respond with changes in their pattern of gene expression and protein synthesis when exposed to low temperatures. In general, plants from temperate climatic regions are considered to be chilling tolerant with variable degree compare to tropical and sub-tropical crops, and can increase their freezing tolerance by cold acclimation.
Soils are the uppermost part of the earth’s crust, formed mainly by the weathering of rocks, formation of humus and material transfer. They vary in terms of origin, appearance, characteristics and production capacity. Soil fertility is the ability of a soil to deliver nutrients needed for the optimum growth of a specified crop. Soil fertility is one of the most important factors in crop production. It has the ability to support crop production determined by the entire spectrum of its physical, chemical and biological attributes. Soil fertility is one important aspect of soil productivity since it is a major source of micronutrients (Fe, B, Cl, Mn, Zn, Cu, Mo, Ni) and macronutrients (N, P, K, Ca, S, Mg, C, O, H) that are needed for plant growth. The lack of these nutrients in the soil causes deficiencies in plants, and their excess leads to toxicities, which have negative impacts on crop yields.
Several parameters can be used to determine the fertility status of a soil. Among them, the soil fertility index was found to be the most useful indicator that helps to improve sustainable land use management and achieve economical yield in crop production. In several regions in the world, some croplands have undergone human-induced soil degradation resulting in poor yield production per unit area of crop harvest. Around 40% of agricultural lands are affected by human induced land degradation. Intensive agricultural production characterized by overuse of fertilizers and chemicals without adherence to agricultural sustainability leads to a decline of soil health, land degradation and severe environmental problems . It is important to note that the deterioration of soil fertility normally takes pace over several years.
Salinity stress affects crop production in over 30% of irrigated crops and 7% of dry land agriculture worldwide. It is one of the major problems affecting crop production all over the world since around 20% of cultivated land and 33% of irrigated land are salt-affected in the world. Salt causes osmotic stress and ionic toxicity in crop plants. Under normal conditions, the higher osmotic pressure in plant cells permits the absorption of water and essential nutrients from a soil solution into the root cells. However, under salt stress conditions, the high concentration of salts in the soil solution prevents absorption of water and essential minerals but will facilitate the entry of Na+ and Cl− ions into the cells, which will have direct toxic effects on cell membranes as well as on metabolic activities in the cytosol .
Low soil pH increases as a result of release of acidifying aluminum, iron and manganese ions, leaching of base ions such as calcium, magnesium, potassium and sodium, decomposition of soil organic matter and regeneration of organic acids, nitrification of ammonia-based fertilizers as well as land management practices. Low soil pH significantly affects crop growth and therefore decreases yield. In maize for instance, soil acidity causes yield loss of up to 69%.
Floods entail different stressful conditions to plants, mainly depending on water depth and its duration. Soil waterlogging damages most crops, with the exception of rice, which like other wetland species thrives when plants are not completely submerged. In view of the changing climate, flooding has become frequent in many lowlands and cultivated areas every year and causes a lot of damage to human beings including losses in crop yields and food stuffs.Flooding usually occurs with heavy rainfall, poor soil drainage and poor irrigation practices. Soil waterlogging has negative impacts on crop production especially for dryland species (such as most cereals, legumes, tubers, etc.) which include several crops. The excess water results in complex changes in plant physiology for non-adapted crops. This leads to restriction of gas diffusion between the plant and its surroundings (accumulation of high CO2 and ethylene in the root zone with very low O2), hypoxia (oxygen levels limit mitochondrial respiration) and anoxia (respiration is completely inhibited), often accompanied by increased of mobilization of ‘phytotoxins’ in reduced soils, leading to poor root metabolism (inability to absorb nutrients), lack of energy within plant cells, restriction of photosynthetic activities and therefore poor growth or death of plant roots and shoots.
The first constraint for plant growth under flooding conditions is the immediate lack of oxygen necessary to sustain aerobic respiration of submerged tissues. As the duration of flooding increases, there is progressive decrease in soil reduction-oxidation potential (redox potential). Flooding events can be classified by two categories: waterlogging where only the root system inside the soil is affected; and submergence, where also parts or the whole shoot are under water. In tree species with different flooding sensitivity, the importance of root-to-shoot transport of metabolites to ‘use rather than lose’ is a relevant criterion used to identify the tolerant species. Only non-wetland plants can survive flooding for a short period of time. The two survival strategies to flooding are plant avoidance of oxygen deficiency in tissues and the adaptation to oxygen deficiency.
Biotic factors affecting crop yields
Plant diseases are caused by different micro-organisms such as viruses, bacteria and fungi. In addition, various soil-borne and above ground insect pests also affect crop production. Variation in climatic conditions often favors the multiplication of pathogens while negatively affecting plant productivity and soil fertility. It causes the reduction of available resources for plants, which fail to produce enough biomass, seeds, and thus yield. Climate-driven migration allows the movement of pathogens and pests from one region to another. Thus, the locally adapted crop genotypes confront new biotic stress factors. The interaction of plants with microbes or microbe-associated molecular patterns can induce resistance to secondary infections by pathogens. This involves the production and systemic signal of a complex of low-molecular-weight plant metabolites, which are well described for dicotyledonous plants, but poorly understood for monocotyledonous plants such as cereal crops. Because of climate variability and change, it is anticipated that new diseases and pests might appear, or that the virulence of the current types may increase.
Technological factors affecting crop yield
A wide range of technological innovations in agriculture like genetic improvement of varieties, fertilizer technology, adaptive microbial technology, pesticides, farm machinery, agronomic and management practices (integrated management of nutrients and pests) have been achieved through research programs to understand their implications in enhancing crop productivity. It has been reported that 1 kg of nutrient fertilizer produces 8 kg of grain. In addition, fertilizers are commonly believed to be very important in crop production since they contribute up to 50% of the crop harvest product. The doubled increase of food production worldwide was partially attributed to a 6.9-fold increase in nitrogen fertilization and a 3.5-fold increase in phosphorous fertilization in the 1990s.
Strategies to overcome crop yield reduction
Climate smart agriculture (CSA) is now widely accepted as the best approach for addressing the effects of climate change in agriculture. It is defined as agriculture that sustainably increases productivity, resilience (adaptation), reduces/removes greenhouse gases (mitigation), and enhances the achievement of national food security and development goals. CSA promotes the transformation of agricultural systems and requires the transformation of agricultural policies to increase food production, to enhance food security, to ensure that food is affordable (low input-cost) while ensuring sustainable natural resource management and resilience to a changing climate.
Climate influences all components of crop production including crop area and crop intensity. Weather forecasting and crop yield prediction or simulations are relevant tools that provide a warning to farmers in preparation of the upcoming season. From the simulation results, farmers can change the crop planting date, use appropriate genotypes, adjust the fertilization and the irrigation cycles to obtain reasonable yields, thus reducing the risk of unexpected events. Several studies have been successfully conducted in crop yield simulation models and were reviewed by Tandzi and Mutengwa . In a general view, the reduction of chemicals’ usage such as fertilizers and pesticides, associated with the improvement of crop input use efficiency will minimize greenhouse gases emissions while protecting the environment. It has been reported that any programs that are working to minimize the adverse impact of climate change on food crops production should first consider the type of crop grown, the production area as well as the geographical and climatic conditions. The knowledge of appropriate planting methods is important because climate events influence the selection of planting method and thus yield even though the total planted area remains unchanged. There is a possibility of producing more yields in sustainable agriculture while generating less environmental pressure.
Improvement of irrigation performance and water management are critical to ensure the availability of water both for food production and for competing human and environmental needs. To improve crop productivity and sustainability, it is very important to evaluate the effects of human activities in soil fertility through the use of appropriate agricultural systems such as tillage, use of recommended rates and types of fertilizer, incorporation of farmyard manure and/or crop residues into the soil (increase supply of N, P, K and other nutrients) and avoid sewage sludge irrigation. The application of these inputs improves physical properties of soil or soil organic matter in the long term and ensures sustainable agriculture. Shang et al. found that high crop yields and low production variability can be achieved by increasing integrated soil fertility quality index in intensive cropping systems.
Breeding is routinely conducted to increase levels of durable resistance to specific pests, diseases and different abiotic stresses using conventional crop improvement methods. However, there is now an increased use of modern biotechnology techniques such as marker-assisted selection, and transgenic approaches that involve genetic modification and high-throughput sequencing of both plant and pathogenic micro- organisms. Attempts have also been made to utilize transgenic technologies to build intrinsic tolerance mechanisms by the plants through alteration of functional genes. Sustainable technologies like classical breeding approaches and integrated farming principles are also being considered to develop crops adaptation and/or enhance the adaptive mechanisms.
One of the most difficult and important tasks is to ensure the protection of the planet from the degradation through sustainable consumption and production, sustainable management of natural resources and urgent action to take towards climate change at national, regional and global level. Climate change is one of the leading risks affecting the four dimensions of food security which are food availability, food accessibility, food utilization and food system stability. Climate-smart agriculture (CSM) is an approach for transforming and reorienting agricultural systems to support food security under the new realities of climate change. It promotes multidisciplinary actions to be taken by farmers, researchers, private sectors, civil society and policymakers towards climate-resilient pathways. In addition, CSM is based on three principles which are production (sustainable increase of the level of agricultural production and income), adaptation (development of resilient production systems adapted to climate change) and mitigation (reduction or elimination of greenhouse gas emission where possible). It is therefore a response to the challenges faced to satisfy the food needs of an increasing population in a changing climate.
Conclusion and recommendations
Climate smart agriculture sustainably increased crop yields while facilitating achievement of adaptation and mitigation goals in crop production. The development of new climate resilient crop tolerant and adapted to biotic and abiotic stresses will require the propagation of novel cultural methods, the implementation of various cropping schemes, and the combination of different conventional and non-conventional approaches. The development of integrated soil-crop system management and integrated diseases and pests’ management with existing crop varieties and the increase of new improved and adapted high-yielding varieties under water and nutrient limited environment should be the new target for the coming generations. The application of genetically engineered crop plants by the introduction and/or overexpression of selected genes seem to be a viable option to hasten the breeding of improved adapted and high-yielding crop genotypes. Trans and interdisciplinary researches are needed to find relevant solutions for all the environmental challenges reducing crop yields while ensuring food security.
By: ASRAF UDDIN AHMED ProfileResourcesReport error
Access to prime resources
New Courses