send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
Type your modal answer and submitt for approval
How many different sums can be formed with the denominations Rs. 50, Rs. 100, Rs. 200, Rs. 500 and Rs. 2,000 taking at least three denominations at a time?
16
15
14
10
Sol. Ans.(a).
We have to choose at least three denominations out of five. So we can either choose 3 denominations out of 5 or choose 4 out of 5 or choose all 5.
Mathematically it will be written as –
Total number of ways = 5C3 + 5C4 + 5C5 = 10 + 5 + 1 = 16 ways.
Don’t worry about ‘different sums’, they will be ‘different’ as each time we are taking a different set of denominations.
Manually, these combinations will be –
(a) Three denomination combinations –
50+100+200; 50+100+500; 50+100+2000; 50+200+500; 50+200+2000; 50+500+2000; 100+200+500; 100+200+2000; 100+500+2000; 200+500+2000; TOTAL 10
(b) Four denomination combinations –
50+100+200+500; 50+100+200+2000; 50+100+500+2000; 50+200+500+2000; 100+200+500+2000; TOTAL 5
(c) Five denomination combinations –
50+100+200+500+2000; TOTAL 1
So total = 10 + 5 + 1 = 16.
By: Brijesh Kumar ProfileResourcesReport error
Access to prime resources
New Courses