send mail to support@abhimanu.com mentioning your email id and mobileno registered with us! if details not recieved
Resend Opt after 60 Sec.
By Loging in you agree to Terms of Services and Privacy Policy
Claim your free MCQ
Please specify
Sorry for the inconvenience but we’re performing some maintenance at the moment. Website can be slow during this phase..
Please verify your mobile number
Login not allowed, Please logout from existing browser
Please update your name
Subscribe to Notifications
Stay updated with the latest Current affairs and other important updates regarding video Lectures, Test Schedules, live sessions etc..
Your Free user account at abhipedia has been created.
Remember, success is a journey, not a destination. Stay motivated and keep moving forward!
Refer & Earn
Enquire Now
My Abhipedia Earning
Kindly Login to view your earning
Support
Type your modal answer and submitt for approval
The product of two integers p and q, where p > 60 and q > 60, is 7168 and their HCF is 16. The sum of these two integers is
256
184
176
164
As 16 is their HCF, hence Let P = 16x & q = 16y P x Q = Product 16x * 16y = 7168 xy = 28 As HCF is 16, hence the sum of the two numbers must be a multiple of 16, this removes option (2) & (4) Using option (a), 16x + 16y = 256 x + y = 16 & xy = 256 On solving, X = 2 & y = 14 Thus, P = 16 x 2 = 32, which is less than 60. Using option (2), 16(x+y) = 176 = x + y = 1 & xy = 28 => x = 4 & y = 7 P = 16 x 4 = 64 & Q = 16 x 7 = 112 , Sum of P & Q = 64 +112 = 176
By: Munesh Kumari ProfileResourcesReport error
Access to prime resources
New Courses