If N = (√6 - √5)/(√6 + √5), then what is the value of N + (1/N)?
Explanation:
Let’s break this down step by step:
- Take N = (v6 - v5)/(v6 + v5)
- To find N + (1/N), we’ll calculate 1/N first.
Flip N:
- 1/N = (v6 + v5)/(v6 - v5)
Now, add N and 1/N:
- N + 1/N = (v6 - v5)/(v6 + v5) + (v6 + v5)/(v6 - v5)
Let’s get common denominators and add up:
- N + 1/N = [ (v6 - v5)² + (v6 + v5)² ] / [ (v6 + v5)(v6 - v5) ]
Numerator:
- (v6 - v5)² = 6 - 2v30 + 5 = 11 - 2v30
- (v6 + v5)² = 6 + 2v30 + 5 = 11 + 2v30
- Add: (11 - 2v30) + (11 + 2v30) = 22
Denominator:
- (v6 + v5)(v6 - v5) = 6 - 5 = 1
So,
- N + 1/N = 22 / 1 = 22
Option:4, 22 is correct.
The other options (1, 10, 11, 12) are way off because they don't add up given the arithmetic above. No way around it—the answer's 22.
By: Kamal Kashyap ProfileResourcesReport error